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For the Rayleigh-number range 107 � Ra � 1011 we report measurements of the
Nusselt number Nu and of properties of the large-scale circulation (LSC) for
cylindrical samples of helium gas (Prandtl number Pr= 0.674) that have aspect
ratio Γ ≡ D/L = 0.50 (D and L are the diameter and the height respectively) and
are heated from below. The results for Nu are consistent with recent direct numerical
simulations. We measured the amplitude δ of the azimuthal temperature variation
induced by the LSC at the sidewall, and the LSC circulation-plane orientation θ0, at
three vertical positions. For the entire Ra range the LSC involves a convection roll that
is coherent over the height of the system. However, this structure frequently collapses
completely at irregular time intervals and then reorganizes from the incoherent
flow. At small δ the probability distribution p(δ) increases linearly from zero; for
Γ = 1 and Pr =4.38 this increase is exponential. No evidence of a two-roll structure,
with one above the other, was observed. This differs from recent direct numerical
simulations for Γ = 0.5 and Pr =0.7, where a one-roll LSC was found to exist only
for Ra � 109 to 1010, and from measurements for Γ = 0.5 and Pr � 5, where one-
and two-roll structures were observed with transitions between them at random time
intervals.
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1. Introduction
Understanding turbulent Rayleigh–Bénard convection (RBC) in a fluid heated

from below (Ahlers, Grossmann & Lohse 2009; Lohse & Xia, in press) remains a
challenging problem in nonlinear physics. A major aspect is the global heat transport
by the turbulent fluid. Another interesting feature of the dynamics of this system is
a large-scale circulation (LSC). Apart from important applications in industry and
astrophysics, the LSC provides an exciting example from fluid mechanics of systems
that can be discussed in terms of non-equilibrium statistical mechanics (Brown &
Ahlers 2006a , 2008).

Here we report results obtained with cylindrical samples of aspect ratio
Γ ≡ D/L � 0.50 (D is the diameter and L the height) as a function of the Rayleigh
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number Ra =αg�T L3/(κν) over the range 107 � Ra � 1011 (α is the isobaric thermal
expansion coefficient, g the acceleration of gravity, κ the thermal diffusivity, ν the
kinematic viscosity and �T the applied temperature difference). We used helium gas
at various pressures and at a mean temperature near ambient, where the Prandtl
number Pr ≡ ν/κ is 0.674. We briefly report measurements of the Nusselt number
Nu= QL/(A�T λ) (Q is the heat current passing through the sample, A the sample
cross-sectional area and λ the thermal conductivity) and then focus on the properties
of the LSC. For direct comparison we include new measurements and analyses for
the case of Pr= 4.38, Γ = 1.00.

In the next section we describe three sample chambers, known as HPCF-I, HPCF-
II and HPCF-III, that were used. In § 2.2 we explain how sidewall-temperature
measurements were used to determine LSC properties. The results for Nu are presented
in § 3.1. In § 3.2.1 we show results for the orientation and amplitude of the LSC as a
function of time. Time-averaged statistical properties are presented in § 3.2.2. A brief
summary is presented in § 4.

2. Apparatus and experimental methods
2.1. The samples

Three sample chambers, known as high-pressure convection facilities or HPCF, were
used. Two of them (HPCF-I and HPCF-II) were of identical physical size with
L =2240 ± 2 mm and D = 1122 ± 2 mm, but HPCF-I had aluminium and HPCF-II
had copper top and bottom plates. Each had a Plexiglas sidewall of thickness 0.95 cm
and several isothermal shields that controlled stray heat currents. They were operated
in a very large pressure chamber known as the ‘Uboot of Göttingen’ at the Max
Planck Institute for Dynamics and Self-Organization in Göttingen, Germany. The
Uboot of Göttingen is a cylinder, with a horizontal axis, of length 5 m and diameter
2.5 m. On top of it there is a turret of diameter 1.5 m and height 1.5 m, which
can accommodate the full length of HPCF-I and HPCF-II. The Uboot can be filled
with various gases, including helium, nitrogen and sulfur hexafluoride, at pressures
of up to 19 bars. HPCF-III had L = 490.0 ± 0.5 mm and D = 246.6 ± 0.3mm, an
aluminium top plate and a copper bottom plate and a plexiglas sidewall of thickness
0.32 cm. It was operated in a pressure vessel of inner diameter 457 mm and height
914 mm located in our Santa Barbara laboratory. For each of the three sample
chambers the bottom plate was a composite consisting of two metal plates with a
layer of Lexan (polycarbonate) of thickness 5 mm between them. The plates extended
a small distance, of the order of 1 cm, into the sidewall, and the sides facing the
fluid had mirror finishes. Joule heating was applied uniformly to the bottom side
of the composite. The heat current Qs entering the sample was determined from
the temperature drop across and the conductance of this composite (Malkus 1954;
Krishnamurti & Howard 1981). The composite conductance was determined with
an accuracy of about 1 %. Rayleigh numbers were determined from fluid properties
evaluated at the mean temperature. The samples were helium gas (Prandtl number
Pr ≡ ν/κ =0.674) at several pressures and near-ambient temperatures. Each data
point was derived from a run of over 80 000 s, with the first 40 000 s discarded to
avoid transients and the remainder averaged when appropriate.

For direct comparison, a more limited set of new results was obtained using water
at 40◦C where Pr= 4.38 in the ‘medium apparatus’ described by Brown et al. (2005c).
That sample had D = 247.8 mm and L = 247.8 mm (Γ = 1.00), copper top and bottom
plates, and a Plexiglas sidewall of thickness 3.2 mm.
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Figure 1. The location of the sidewall thermometers. For the top view, only the thermometer
locations for the set located a distance L/2 above the bottom plate (on the horizontal mid-plane,
or z = 0) are shown. The side view indicates the location of all three sets. The z axis to the
right of the side view shows the vertical location of the thermistor sets.

For comparison of the dynamics we mention that ν =0.086 cm2 s−1 for helium
at 30◦C and 14.5 bars and ν = 6.7 × 10−3 cm2 s−1 for water at 40◦C. This yields
tν ≡ L2/ν =5.8 × 105 (0.92 × 105) s for HPCF-I and HPCF-II (the medium apparatus).
LSC turnover times τLSC depend on Ra and Pr as well as on the pressure. From
the Reynolds-number results of Chavanne et al. (2001) we estimate roughly for
HPCF-II that τLSC ranges from about 25 s near Ra = 109 to 10 s near Ra = 1011.
For comparison, tν � 2 × 105 s for the Γ = 0.5 samples of Xi & Xia (2007, 2008a ,b)
who obtained measurements for 1.6 × 1010 � Ra � 7.2 × 1010, with their longer runs
at Ra = 5.7 × 1010. For the Γ = 0.5 sample of Xi & Xia (2007, 2008a ,b) we estimate
a turnover time at Ra = 1.6 × 1010 (7.2 × 1010) of 27 s (10 s). These values are not very
different from those for our measurements with helium.

2.2. Sidewall-temperature measurements

Three sets of eight thermistors each, equally spaced around the circumference at the
three vertical positions −L/4, 0 and L/4 (we take the origin of the vertical axis at the
horizontal mid-plane of the sample) and labelled i = 0, . . . , 7, and so on as shown in
figure 1, were imbedded in small holes drilled horizontally into but not penetrating
the sidewall (Brown, Nikolaenko & Ahlers 2005b; Ahlers, Brown & Nikolaenko 2006;
Brown & Ahlers 2006a ,b). The temperatures of all thermistors were measured with
a sampling period of about 5s. Since the LSC carried warm (cold) fluid from the
bottom (top) plate up (down) the sidewall, they detected the location of the upflow
(downflow) of the LSC by being relatively high (low).

The orientation and strength of the LSC was determined by fitting the continuous
function

Tf = Tw,m + δm cos (θi − θm) , i = 0, . . . , 7, (2.1)

separately at each time step, to the eight temperature readings obtained from the
thermistors at azimuthal position θi = iπ/4. The subscript ‘m ’ indicates the vertical
position at the horizontal mid-plane (z = 0), and the subscript ‘w ’ indicates that Tw,m

is measured at the sidewall. The three parameters Tw,m, δm and θm were least squares
(LSQ) adjusted; δm is a measure of the temperature amplitude of the LSC, and
θm is the azimuthal orientation of the plane of the LSC circulation. The azimuthal
average of the temperature at the horizontal mid-plane is given by Tw,m. We calculated
temperatures Tw,t and Tw,b, orientations θt and θb and amplitudes δt and δb for the
top and bottom levels at z =L/4 and −L/4 separately by the same method.
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Figure 2. The reduced Nusselt number Nu/Ra0.3 on a linear scale as a function of Ra on a
logarithmic scale. Open circles: HPCF-I. Solid circles: HPCF-II. Solid diamonds: HPCF-III.
Stars: from Niemela et al. (2000) as adjusted by Niemela & Sreenivasan (2006). Plus symbols:
from Chavanne et al. (2001). Open diamonds: DNS for Pr = 0.7 (Stevens, Verzicco & Lohse,
in press).

3. Results
3.1. Nusselt numbers

Results for Nu are plotted as Nu/Ra0.3 in figure 2. The open (solid) circles are from
HPCF-I (HPCF-II). They agree very well with each other, showing that end-plate
corrections (Verzicco 2004; Brown et al. 2005c) are insignificant as expected. (Very
recent measurements with SF6 revealed that these corrections are quite small or
negligible even for Ra as large as 1014.) The solid diamonds are from HPCF-III.
Where they overlap, they are about 2.5 % higher than the HPCF-I and HPCF-II
results. This difference is within the estimates of systematic errors given in § 2.1. The
data of Niemela et al. (2000; stars) are for Γ = 0.50 and Pr = 0.69. They generally
are of the same size as ours but have a somewhat different Ra dependence. For small
Ra (say Ra � 109) they have relatively large uncertainties because a significant and
uncertain correction for the influence of the sidewalls (Ahlers 2000; Roche et al. 2001)
on the heat flux through the sample had to be made (Niemela & Sreenivasan 2006).
The results of Chavanne et al. (2001) are for slightly larger Pr (see e.g. figure 2 of
Funfschilling, Bodenschatz & Ahlers 2009) and Γ = 0.5. They have a Ra dependence
very similar to ours but on average are about 7 % higher. For further comparisons of
various data, see also Funfschilling et al. (2009). The open diamonds are from direct
numerical simulations (DNSs) by Stevens et al. (in press) for Pr= 0.7. At small Ra
they agree well with our data. At larger Ra they are expected to be somewhat high
because of inadequate spatial grid resolution.

3.2. The large-scale circulation (LSC)

3.2.1. Time-dependent properties

Unless explicitly stated, the data shown are for Pr= 0.674, Γ =0.50, Ra =
1.1 × 1011, run 0906101 of HPCF-II, which extended over 1 70 000 s; but the behaviour
of the LSC was found to be very similar at other Ra and for HPCF-III. It was not
monitored during the HPCF-I measurements.

In figure 3(a) we show the three LSC orientations θk obtained by fitting (2.1) to
the eight sidewall temperatures at any one time and separately at each of the three
levels k = b, k =m and k = t (see figure 1). One sees that there are time intervals when
the orientations are relatively steady, interspersed with time intervals of great and
sudden change. The orientations at the three levels seem to differ from each other by
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Figure 3. LSC dynamics. (a), (c)–(e), (g)–(i ) From HPCF-II, run 0906101, Pr = 0.674,
Γ = 0.50, Ra =1.0 × 1011, P = 15.50 bars, �T = 28.4 K. (b), (f ), (k ) From the medium
apparatus, run 0907151, Pr =4.38, �T = 20.00 K, Γ = 1.00 and Ra = 1.1 × 1010. (a) The
orientations θk , k = b (solid line), k =m (dashed line) and k = t (dotted line). (Where the three
lines can not be distinguished, two or three of them are on top of each other because the θk

values are nearly the same.) (b) Analogous results to (a), but for Pr =4.38. (c), (d ) The difference
θk − θm for (c) k = t and (d ) k = b. (e) The difference θt − θb . (f ) Analogous results to (d ),
but for Pr = 4.38. (g)–(i ) The temperature amplitudes δk for (g) k = b, (h) k = m and (i ) k = t .
(k ) Analogous results to (h), but for Pr = 4.38, Γ = 1.00. All angles are in radians; all
amplitudes δ are in Kelvin; and the origin of the time axis is at the beginning of the run.



162 G. Ahlers, E. Bodenschatz, D. Funfschilling and J. Hogg

0

0.2

δ
k 

(K
)

θ
t –

 θ
b

θ
k

σ
θ

k

–10

0

10

–3

0

3

86 000 88 000 90 000 92 000
0

2.0

Time  (s)

(a)

(b)

(c)

(d)

Figure 4. Details of LSC dynamics from figure 3, run 0906101, for 85 000 � t � 93 000 s (the
time interval indicated in (a) by the thick horizontal bar). (a) Orientations θk . (b) Differences
θt − θb . (c) Temperature amplitudes δk . (d ) Standard error σθk

of θk . The lines in (a), (c) and
(d ) are as follows: the solid line is for k = b; the dashed line is for k = m; the dotted line is for
k = t . Angles are in radians.

large amounts, but this is illusory, since the θk show the phase evolution of the LSC
orientation and are 2π periodic; i.e. only θ mod 2π is relevant to the LSC orientation.

It is our view that the net rotations suggested by figure 3(a) can be a result
of the LSQ analysis and may be unrelated to the physical rotation of the LSC
circulation plane. In figure 4 we show detailed plots for the short time interval
indicated by the horizontal solid line in figure 3(a). Figure 4(d ) gives the probable
error (67 % confidence limit) of θk derived from the fits. When δk (figure 4c) is small,
an unambiguous fit cannot be obtained because there virtually is no signal, and the
errors σθk

of θk are large. In those cases very large unphysical changes of θk can
be produced by the fitting procedure. This interpretation is consistent also with the
results in figure 3(a), which indicate ‘rotation’ of the LSC plane in opposite directions
at different levels rather than coherent rotation. Thus it is our interpretation that
we have no evidence for the fast counterclockwise (when seen from above) average
rotation, by a full revolution in an hour or two, nor for the fast instantaneous rotation
(sometimes briefly at a rate of 20◦ s−1) that was reported by Sun, Xi & Xia (2005) for
Γ =0.5 and Pr= 5.3.

In figure 3(b) we show results that are analogous to those in figure 3(a) but for
Pr= 4.38, Γ = 1.00 and Ra =1.1 × 1010. One sees that the azimuthal displacements
are much smaller and that the three levels tend to stay closer together. We note that
for this case δk stays well above zero most of the time (see figure 3k ), permitting an
unambiguous LSQ fit almost all the time.

In figures 3(c)–3(e) we show θb −θm, θt −θm and θt −θb, all shifted by multiples of 2π
into the interval ± π, as a function of time. There are periods when these quantities are
close to zero, with only minor fluctuations of much less than a radian. During these
intervals the LSC orientation is aligned at all three levels, indicating the existence
of a single convection roll. These time intervals tend to coincide with those during
which the orientations in figure 3(a) are relatively steady. Results for δk shown in
figures 3(g)–3(i ) indicate that the δk have relatively large values during these intervals
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of coherent flow. Interspersed between these intervals are ones when the angular
differences in figures 3(c)–3(e) become very large and erratic. These intervals tend to
coincide with the ones in figure 3(a) when the orientations change rapidly and with
the ones in figures 3(g)–3(i ) when the δk are near zero; thus we believe that some or
all of these large excursions are a result of the LSQ fitting procedure as explained
above and that they do not correspond to any physical features of the LSC.

In figure 3(f ) we show measurements that are analogous to those given in figure 3(d )
but for Pr = 4.38, Γ = 1.0 (the results for θt − θm are very similar). Here too the
difference in orientation between the bottom (z = −L/4) and the middle (z = 0)
hovers about zero, indicating the alignment expected from a single convection roll.
There are very few large deviations. When these do occur, they are associated with
cessations that involve a virtual vanishing of δk (see figure 3k ). We note that during
the periods of coherence the spread about θb − θm = 0 is larger for figure 3(f ) than
it is in figure 3(d ). This is due to oscillations (unresolved on the time scale of the
figure) associated with the torsional mode of the LSC for Γ = 1 (Funfschilling &
Ahlers 2004; Funfschilling, Brown & Ahlers 2008; Xi & Xia 2008a), which were not
observed for the Pr = 0.674, Γ =0.50 case. (Indeed none were observed by Xi & Xia
2008a either for the Γ � 0.5, Pr � 5 case.) Our method of analysis could not reveal
a sloshing mode (Zhou et al. 2009; Brown & Ahlers, in press), but that mode is
likely to be absent as well for Γ =0.5, since it is closely associated with the torsional
mode.

We show the temperature amplitudes δk at the three levels in figures 3(g)–3(i ). They
vary widely with time, but they are roughly similar at the three levels at any one
moment. This indicates that the LSC self-organizes into a substantial flow, coherent
over the entire height of the cell, and then collapses again to a near-vanishing level.
The intervals of great strength tend to coincide with those of relatively constant
orientations in figure 3(a) and relatively small azimuthal differences in figures 3(c)–
3(e). The periods of collapse typically have a duration of order 103 s. This is an
order of magnitude longer than the typical duration of cessations as observed for
Γ = 1, Pr =4.38 (Brown & Ahlers 2006b) and Γ = 0.5, Pr � 5 (Xi & Xia 2008a). This
can be seen more clearly in figure 4(c). (In this connection it is noteworthy that the
estimates of the turnover time of the LSC yield nearly the same values for the Pr � 5,
Γ = 0.5 case on the one hand and the Pr= 0.674, Γ = 0.5 case on the other because
differences owing to the Pr and Ra dependencies of the Reynolds number are just
about cancelled by the difference in the vertical viscous diffusion time of the two
samples.) Thus we refrain from referring to the events for Pr= 0.674 as cessations.

An interesting question is whether these long-lasting and frequent collapses can
be understood in terms of the model of Brown & Ahlers (2008) simply by changing
the shape of the potential and the strength of the stochastic driving. In that case
their physics is the same as that of cessations. But we cannot rule out that additional
physics will have to be invoked at these smaller Prandtl numbers. A possibility is
that lateral heat transport, which would be more important at small Pr, tends to
overwhelm the LSC, as it does the Ekman vortices in rotating RBC (Zhong et al.
2009). In that case the collapses would be a qualitatively new phenomenon.

Finally, for comparison we show δm for Pr =4.38, Γ = 1.0 in figure 3(k ). In this
case one sees that decays of δm close to zero, corresponding to cessations, are quite
rare and, when they occur, are of very short duration.

The existence of a single role for Γ = 1/2 and Pr � 0.7 was found also by DNS
(Verzicco & Camussi 2003; Stringano & Verzicco 2006), but their work indicated a
transition to a two-roll regime for Ra greater than 109 or 1010. Up to Ra � 1011 we
do not find such a transition.
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Figure 5. (a) The time-averaged azimuthal temperature variations 〈Ti − Tw,k〉t as a function
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The probability distributions of dθk/dt . Solid circles: k = b. Open circles: k = m. Solid squares:
k = t . Data are from run 0906101, HPCF-II.

Our observations of a single convection roll which spontaneously self-organizes and
then collapses at irregular time intervals is different from the findings for Γ = 0.5 and
Pr � 5 by Xi & Xia (2008b). Those authors observed a sequence, irregular in time, of
either a one-roll state or a state consisting of two rolls positioned approximately one
above the other. Our data in figure 3 (and in all other runs) never gave an indication
of the two-roll state, which would have led to a phase shift of π between θt and θb.

3.2.2. Time-averaged properties

In this section we examine several statistical (i.e. time-averaged) properties of the
LSC.

An important question is whether the LSC produces the sinusoidal azimuthal
temperature variation that is expected at the sidewall from a single convection roll.
We show in figure 5(a) the time average 〈Ti − Tw,k〉, k = b, k = m and k = t , as a
function of θi − θk . Here both Tw,k and θk were determined from fits of (2.1) to
individual sets of eight temperatures, one each at the three vertical levels (see figure 1)
and at each instant of time. Along the (θi − θk) axis the data were first sorted into an
arbitrarily chosen number of 16 bins and then time averaged separately in each bin.
One sees that on average, the azimuthal temperature variation is well approximated
by a cosine and that the amplitude, although slightly smaller at the horizontal mid-
plane, is nearly the same at the three levels. The root-mean-square fluctuations of
individual temperature readings about the fits of (2.1) to the data were typically about
20 % of 〈δk〉. These findings are similar to what was reported for Pr =4.38, Γ =1.00.
(Brown & Ahlers 2007)

The azimuthal dynamics is primarily diffusive, interrupted frequently by the
collapses discussed in the previous section. It is characterized by typical rates of change
dθk/dt . Figure 5(b) gives the probability distributions of dθk/dt . Typical absolute rates
are less than 10−2 rad s−1. One can infer that, for instance, dθm/dt < 0.024 rad s−1 for
99 % of the run time. This differs from the case discussed by Sun et al. (2005), who
reported larger rates.

In figure 6(a) we show the probability distribution of δk/〈δk〉 (here 〈δk〉 is the
time average of δk). One sees that p(δk/〈δk〉) increases linearly with δk at small δk .
This is very different from the results for Γ = 1, Pr = 4.38 shown in figure 6(b)
and others reported previously, for instance those shown in figure 5 of Brown &
Ahlers (2008). Those data revealed an exponential growth with δk at small δk . The
exponential case is consistent with diffusion in a potential in the large-barrier limit;
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Figure 6. (a) The probability distribution of δk/〈δk〉 for run 0906101, HPCF-II. The symbols
are as in figure 5. The solid line is a fit of p(δk/〈δk〉) = a(δk/〈δk〉) − b(δk/〈δk〉)2 to the data
for k = m (middle row of thermistors) and δk/〈δk〉 < 1.5 which yielded a = 1.60 and b = 0.84.
(b) Analogous results to (a), but for Pr = 4.38, Γ = 1.00 and Ra = 1.1 × 1010 (run 0907151,
‘medium’ apparatus).

the linear growth must be interpreted in terms of the more complicated case in which
the barrier to diffusion is not large and in which the potential maximum at δk =0
is reached frequently. We also note that a Gaussian distribution about δk/〈δk〉 =1,
which is expected for diffusion in a deep potential and found in the Γ = 1, Pr = 4.38
case, is not a good approximation for Pr = 0.674, Γ = 0.50. Instead, the polynomial
p(δk/〈δk〉) = a(δk/〈δk〉) − b(δk/〈δk〉)2 provides a good fit to the data up to δk/〈δk〉 � 1.5
as shown in figure 6(a).

We note that integrating p(δk/〈δk〉) up to some cutoff value (δk/〈δk〉)cut yields the
fraction of time that the system spent with δk/〈δk〉 below the cutoff. For example,
(δk/〈δk〉)cut = 0.2 yields 3 % of the time for the case of figure 6(a) and 0.3 % for the
case of figure 6(b).

Finally we remark that the results in figure 6(a), with the values of a and b close
to 1.6 and 0.8 respectively, are typical for our entire range of Ra in both HPCF-II
and HPCF-III.

4. Summary
The results for Nu differ somewhat from the previously reported data for Γ = 0.5

and similar Pr (Niemela et al. 2000; Chavanne et al. 2001; Niemela & Sreenivasan
2006), but the difference probably does not exceed the expected combined systematic
errors. They are consistent with recent DNSs for this system (Stevens et al., in press).
These DNS data agree extremely well with our measurements at relatively small Ra
but are higher than the experiment as Ra exceeds 109 or 1010. According to Stevens
et al. (in press) this difference at large Ra may be attributable to inadequate spatial
grid resolution in the numerical work that is unavoidable, given the capabilities of
current computers.

The results for the LSC are unexpected. Over the entire range of Ra the primary
feature of the LSC is a single convection roll which, when it exists, is coherent along
the entire length of the system. The DNS (Verzicco & Camussi 2003; Stringano &
Verzicco 2006) had indicated that such a structure would be stable only for Ra � 109

to 1010, whereas we find it all the way up to Ra = 1.5 × 1011.
For Γ = 0.5 and Pr � 5 the LSC was studied extensively by Sun et al. (2005) and by

Xi & Xia (2007, 2008a ,b). Our results for Γ =0.5 and Pr= 0.674 differ in interesting
ways from theirs. Xi & Xia (2008b) found occasional transitions between a single
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roll and two rolls, one above the other, with the two-roll state occurring on average
about 7.9 % of the time. We have not observed this phenomenon in any of our runs;
presumably it is absent for Pr =0.674 and Ra � 1011.

We also do not observe the net rotation at a mean rate of about 15 revolutions per
day that was seen at larger Pr by Sun et al. (2005) and is revealed in figure 1 of their
paper. Nor did we find the very large average instantaneous rates of 2.5◦ s−1 cited
by these authors. The maximum instantaneous rotation rate of 20◦ s−1 (0.35 rad s−1)
reported by them is outside the range of our p(dθ/dt) shown in figure 5(b) by more
than an order of magnitude.

We find that the LSC organizes itself into a single roll of significant strength,
coherent over the entire sample length, only to collapse again soon thereafter. This
process of self-organization and collapse repeats at irregular time intervals, with the
periods of weak or no flow occupying a significant fraction of the run time. The
duration of the collapses typically is of order 103 s, which is an order of magnitude
longer than the duration of cessations for Γ =1, Pr =4.38 (Brown, Funfschilling &
Ahlers 2005a) and Γ = 0.5, Pr � 5 (Xi & Xia 2008a).

We presented results for the probability distribution p(δk/〈δk〉) of the thermal flow
amplitudes δk (here 〈δk〉 is the time average of δk) at three vertical positions k = b, m, t

and showed that p(δk/〈δk〉) depends only slightly on vertical position. For Γ =1,
Pr= 4.38, p(δk/〈δk〉) grew exponentially with δk/〈δk〉 at small δk/〈δk〉; here we find
that the representation p(δk/〈δk〉) = a(δk/〈δk〉) − b(δk/〈δk〉)2 provides a good fit to the
results for 0 � δk/〈δk〉 � 1.5.

In a recent model the LSC dynamics for Γ = 1 was described by diffusion in a
potential well (Brown & Ahlers 2008), which, in a large-barrier approximation, leads
to an exponential increase of p(δk) at small δk . Within the context of this model the
linear increase of p(δk) at small δk implies that the large-barrier approximation is not
valid in the present case. A detailed comparison with the model of all the current
results is, unfortunately, well beyond the scope of this paper.
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